首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   55154篇
  免费   3785篇
  国内免费   1959篇
电工技术   1086篇
技术理论   5篇
综合类   2795篇
化学工业   20813篇
金属工艺   4255篇
机械仪表   3232篇
建筑科学   1827篇
矿业工程   1388篇
能源动力   1737篇
轻工业   5460篇
水利工程   518篇
石油天然气   2249篇
武器工业   259篇
无线电   2699篇
一般工业技术   7783篇
冶金工业   2060篇
原子能技术   609篇
自动化技术   2123篇
  2024年   134篇
  2023年   765篇
  2022年   1228篇
  2021年   1593篇
  2020年   1542篇
  2019年   1339篇
  2018年   1304篇
  2017年   1514篇
  2016年   1648篇
  2015年   1794篇
  2014年   2825篇
  2013年   3396篇
  2012年   3582篇
  2011年   4158篇
  2010年   3003篇
  2009年   3245篇
  2008年   2761篇
  2007年   3581篇
  2006年   3233篇
  2005年   2852篇
  2004年   2543篇
  2003年   2206篇
  2002年   1853篇
  2001年   1470篇
  2000年   1239篇
  1999年   1052篇
  1998年   873篇
  1997年   770篇
  1996年   643篇
  1995年   557篇
  1994年   428篇
  1993年   334篇
  1992年   290篇
  1991年   222篇
  1990年   172篇
  1989年   127篇
  1988年   100篇
  1987年   78篇
  1986年   80篇
  1985年   75篇
  1984年   57篇
  1983年   38篇
  1982年   74篇
  1981年   18篇
  1980年   24篇
  1977年   8篇
  1976年   12篇
  1975年   11篇
  1974年   8篇
  1951年   13篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
71.
Nitrogen-doped transition metal materials display promising potential as bifunctional electrocatalysts for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). Herein, Fe/N co-doped three-dimensional (3D) porous graphene (FeN-3D-PG) is prepared via a template method using sodium alginate as the carbon source and low polymerization degree melamine resin as the nitrogen source. The low polymerization degree melamine resin can form complexes with Fe3+ in the aqueous solution and further forms high density Fe-Nx active sites during pyrolysis. Meanwhile, the formed 3D porous structure efficiently promotes the uniform distribution of Fe-Nx active sites. The FeN-3D-PG catalyst exhibits pH-independent ORR activity. For OER, the catalyst possesses a low over potential (370 mV at 10 mA cm−2) in alkaline electrolyte. The Zn-air batteries (ZABs) using FeN-3D-PG as cathode exhibits a power density up to 212 mW cm−2, a high specific capacity of 651 mAh g−1, and the charge-discharge stability of 80 h. This work provides new sight to transition metal materials based ZABs with excellent performance.  相似文献   
72.
RNA can be modified in over 100 distinct ways, and these modifications are critical for function. Pseudouridine synthases catalyse pseudouridylation, one of the most prevalent RNA modifications. Pseudouridine synthase 7 modifies a variety of substrates in Saccharomyces cerevisiae including tRNA, rRNA, snRNA, and mRNA, but the substrates for other budding yeast Pus7 homologues are not known. We used CRISPR-mediated genome editing to disrupt Candida albicans PUS7 and find absence leads to defects in rRNA processing and a decrease in cell surface hydrophobicity. Furthermore, C. albicans Pus7 absence causes temperature sensitivity, defects in filamentation, altered sensitivity to antifungal drugs, and decreased virulence in a wax moth model. In addition, we find C. albicans Pus7 modifies tRNA residues, but does not modify a number of other S. cerevisiae Pus7 substrates. Our data suggests C. albicans Pus7 is important for fungal vigour and may play distinct biological roles than those ascribed to S. cerevisiae Pus7.  相似文献   
73.
《Ceramics International》2021,47(23):33047-33056
In this paper, two kinds of composites constructed by UO3 nanoflakes (which is UO3·yNH3·xH2O, precisely) and different graphene oxide (GO) nanosheets (homemade GO, GO-h, and commercial GO, GO-c) were prepared via solution chemical reaction. The two kinds of GO share similar morphology and possess the same species of functional groups. Nevertheless, GO-h possesses higher oxidization degree and thus could adsorb more uranyl ions, and the corresponding composite shows a much more regular shape: UO3 nanoflakes and GO nanosheets cross each other, which would help overcome the disadvantage of graphene aggregation. As a result, homemade reduced graphene oxide (RGO-h) sheets inside the final UO2 pellets (named as UO2/GO-h) could construct a well-bulit thermally conductive network to enhance its thermal conductivity. However, similar RGO-c network cannot be observed in the UO2/GO-c pellest originated from GO-c. Therefore, only the thermal conductivity of UO2/GO-h pellet acquires a dramatic increase, 37.30% relative to UO2 pellet at 1200 °C, showing that UO2/GO-h possesses great potential for the development of novel UO2-based ATF fuels.  相似文献   
74.
Engineering the texture and nanostructure to improve the electrical conductivity of semicrystalline conjugated polymers must address the rate-limiting step for charge carrier transport. In highly face-on orientation, the charge transport between chains within a crystallite becomes rate-limiting, which is highly sensitive to the π–π stacking distance and interchain charge transfer integral. Here, face-on oriented semicrystalline poly(3,4-ethylenedioxythiophene) (PEDOT) thin films are grown via water-assisted (W-A) oxidative chemical vapor deposition (oCVD). Combining W-A with the volatile oxidant, antimony pentachloride, yields an optimized electrical conductivity of 7520  ±  240 S cm−1, a record for PEDOT thin films. Systematic control of π–π stacking distance from 3.50 Å down to 3.43 Å yields an electrical conductivity enhancement of ≈ 1140%. The highest electrical conductivity also corresponds to minimum in Urbach energy of 205 meV, indicating superior morphological order. The figure of merit for transparent conductors, σdcop, reaches a maximum value of 94, which is 1.9 × and 6.7 × higher than oCVD PEDOT grown without W-A and utilizing vanadium oxytrichloride and iron chloride oxidizing agents, respectively. The W-A oCVD is single-step all-dry process and provides conformal coverage, allowing direct growth on mechanical flexible, rough, and structured surfaces without the need for complex and costly transfer steps.  相似文献   
75.
The aim of this in vitro study was to investigate the changes in mechanical, optical, and surface properties of multilayered zirconia during hydrothermal aging.One conventional block (Katana Zirconia HT) and three multilayered blocks (Katana Zirconia ML, STML, and UTML) of monolithic zirconia were examined. Bar-shaped specimens were autoclaved at 134°C and 0.2MPa for 0, 5, and 10 h. The Young's modulus, three-point flexural strength, and nanoindentation hardness were measured to evaluate the mechanical properties. The surface roughness, phase distribution, surface microstructure, and elemental composition were measured to analyze the surface properties. The contrast ratio and total transmittance were measured via spectrophotometry to evaluate the optical properties. Statistical differences were analyzed using appropriate ANOVA, Tukey HSD post hoc tests, and independent and paired sample t-tests (α = .05).The monoclinic phase increased gradually after hydrothermal aging. The yttrium and zirconium concentrations decreased, and the oxygen concentration and the surface roughness increased in all specimens (P<.05) after the aging process. All specimens showed significant grain push-out and microcracks. The total transmittance increased, and the contrast ratio and Young's modulus decreased in all specimens (P<.05) after the aging process. The nanoindentation hardness and three-point flexural strength exhibited a decreasing tendency after the aging process. However, there were no statistical differences (P>.05) between the materials. Significant interactions between material grades and hydrothermal aging were found for all the properties studied (P<.001).Microstructural alterations and significant phase transformations were detected on the surface of the multilayered zirconia after hydrothermal aging. The hydrothermal aging led to increased surface roughness, opaqueness, and elasticity of multilayered zirconia. The optical, mechanical, and surface properties of multilayered zirconia were influenced by the grade of the material after hydrothermal aging. Careful consideration of the grade of materials is necessary for the appropriate selection of multilayered zirconia ceramics for monolithic restorations.  相似文献   
76.
The fashionable Parr–Pearson (PP) atoms-in-molecule/bonding (AIM/AIB) approach for determining the exchanged charge necessary for acquiring an equalized electronegativity within a chemical bond is refined and generalized here by introducing the concepts of chemical power within the chemical orthogonal space (COS) in terms of electronegativity and chemical hardness. Electronegativity and chemical hardness are conceptually orthogonal, since there are opposite tendencies in bonding, i.e., reactivity vs. stability or the HOMO-LUMO middy level vs. the HOMO-LUMO interval (gap). Thus, atoms-in-molecule/bond electronegativity and chemical hardness are provided for in orthogonal space (COS), along with a generalized analytical expression of the exchanged electrons in bonding. Moreover, the present formalism surpasses the earlier Parr–Pearson limitation to the context of hetero-bonding molecules so as to also include the important case of covalent homo-bonding. The connections of the present COS analysis with PP formalism is analytically revealed, while a numerical illustration regarding the patterning and fragmentation of chemical benchmarking bondings is also presented and fundamental open questions are critically discussed.  相似文献   
77.
The solder paste printing (SPP) is a critical procedure in a surface mount technology (SMT) based assembly line, which is one of the major attributes to the defect of the printed circuit boards (PCBs). The quality of SPP is influenced by multiple factors, such as the squeegee speed, pressure, the stencil separation speed, cleaning frequency, and cleaning profile. During printing, the printer environment is dynamically varying due to the physical change of solder paste, which can result in a dynamic variation of the relationships between the printing results and the influential factors. To reduce the printing defects, it is critical to understand such dynamic relationships. This research focuses on determining the printing performance during printing by implementing a wavelet filtering-based temporal recurrent neural network. To reduce the noise factor in the solder paste inspection (SPI) data, this research applies a three-dimensional dual-tree complex wavelet transformation for low-pass noise filtering and signal reconstruction. A recurrent neural network is utilized to model the performance prediction with low noise interference. Both printing sequence and process setting information are considered in the proposed recurrent network model. The proposed approach is validated using practical dataset and compared with other commonly used data mining approaches. The results show that the proposed wavelet-based multi-dimensional temporal recurrent neural network can effectively predict the printing process performance and can be a high potential approach in reducing the defects and controlling cleaning frequency. The proposed model is expected to advance the current research in the application of smart manufacturing in surface mount technology.  相似文献   
78.
《Ceramics International》2022,48(22):32827-32836
To investigate the crystal structure, electrical properties, and magnetic properties of Ca–Sn co-doped Y3-xCaxFe5-xSnxO12 (x = 0.00–0.25 in steps of 0.05), solid-state reaction experiments, first principles calculations, and complex crystal bonding theoretical calculations were performed. The relative permittivity (εr) is strongly correlated with the average bond ionicity when Ca2+ is added. Furthermore, appropriate Sn4+ substitution significantly lowers the dielectric loss (tanδε) associated with the lattice energy. The right amount of Ca–Sn co-doping can change the saturation magnetization (4πMS) and improve the microscopic morphology of YIG, lowering the ferromagnetic resonance linewidth (ΔH) of YIG. The optimized microwave dielectric and magnetic properties are as follows: εr = 14.7, tanδε = 4.15 × 10?4, 4πMS = 1680 G, and ΔH = 53 Oe for Y2.8Ca0.2Fe4.8Sn0.2O12 sintered for 6 h at 1425 °C. Based on this material, a simple 3D model of a strip-line circulator with an insertion loss of less than 0.3 dB at each port and isolation greater than 20 dB in the 10–12 GHz range was developed, indicating the potential of the material for microwave high-frequency components such as circulators.  相似文献   
79.
《Ceramics International》2022,48(11):15017-15025
The dissolution behavior of MgO in CaO–SiO2–Al2O3 ternary slag at the interface of single-crystal, dense poly-crystal, and porous poly-crystal MgO was investigated to evaluate the effect of the surface properties of the MgO. The experimental results revealed that a detached spinel layer formed at the MgO interface due to the change in thermodynamic condition of the slag, which was independent of the surface properties. On the other hand, it was also confirmed that the growth rate and morphology of the detached spinel layer strongly depended on the surface properties, such as porosity and curvature of MgO. During the formation of the spinel layer at the interface during MgO dissolution, a kinetic approach adopting parabolic relation theory was employed to determine the correlation between the surface properties and the spinel growth mechanism.  相似文献   
80.
《Ceramics International》2022,48(18):26303-26311
In dental clinics, it is common to perform small fitting adjustments in dentures using a micro-grinding tool after testing them in the patient's mouth. This procedure increases local roughness and can lead to formation of microcracks on the prosthesis surface. This study aimed to investigate the benefits of a post-finishing heat treatment to surface roughness and crack healing and its effect on the flexural strength of lithium disilicate (LD) dental glass-ceramics. Commercially available lithium metasilicate, Li2SiO3, samples were heat treated at 840 °C for 7 min to induce the phase transformation into LD, Li2Si2O5. The LD samples were characterized by X-ray Diffraction, Scanning Electron Microscopy, Vickers hardness, Young’s modulus, and fracture toughness. One of the surfaces of the LD samples was sanded aiming to simulate the denture fitting adjustments performed in the dentist’s laboratory, generating a rough surface, Group 1. Half of the LD samples had their biaxial flexural strength evaluated by the piston-on-three-ball test (P–3B) and the other half were submitted to a second short-term heat treatment (840 °C - 5 min), Group 2, and later assessed by the P–3B. Roughness parameters in both groups were measured by 3D optical profilometry. After the crystallization heat treatment, formation of elongated LD crystals, Li2Si2O5, 35% amorphous phase, and residual Li3PO4 was observed. In addition, the following mechanical property values were obtained: Vickers hardness = 5.8 ± 0.1 GPa, fracture toughness = 2.2 ± 0.1 MPa m1/2, and Young’s modulus = 100.3 ± 0.3 GPa. The samples in Group 1 showed bending strength of 206 ± 30 MPa and the following roughness parameters: Ra = 0.45 ± 0.16 μm, Rz = 22.7 ± 6.7 μm, and PV = 27.7 ± 7.1 μm. In the samples in Group 2, the Ra, Rz and PV roughness parameters were 0.31 ± 0.12 μm, 5.2 ± 2.5 μm, and 9.2 ± 4.7 μm, respectively. With this decrease in roughness, the bending strength increased by 62%, with a mean value of 331 ± 59 MPa. In the need for machine finishing of LD-based glass-ceramic dental prostheses, the use of a second short-term heat treatment at 840 °C for 5 min generates considerable gains in bending strength, increasing the lifecycle of the prosthesis as a result of reduced surface roughness caused by softening of the remaining amorphous phase in the glass-ceramic. These conditions can be adapted to each chemical and crystallographic composition of the glass-ceramic under study.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号